If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+6a-2=0
a = 1; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·1·(-2)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{11}}{2*1}=\frac{-6-2\sqrt{11}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{11}}{2*1}=\frac{-6+2\sqrt{11}}{2} $
| x^2-14-51=0 | | 8/7x-7/5=5x+1 | | -35m-15=76 | | 3y^2-33y=0 | | -30m-11=67 | | p2-10p=-21 | | -4m-13=81 | | 7-7x-3=-44+5x-12 | | 16-4x=-12x | | X-2/3x-4=1 | | -14=x/4-7 | | 1/8x+2=-3 | | 33=15-2x | | 0.4x^2+2x+2=45 | | A=x(100-2x) | | y/0.34=7.5 | | A=1/4s^2 | | 24x+12=6x-18 | | 9-2n=1-4n | | 900=15x^2 | | -8p=20(4/5p+3-3/4p | | 10x-38=62+5x | | 1/x^2+((x+3)/(2x))=1/2 | | 80-x=4 | | 4^4x-5=36 | | 1y+6=12 | | 2b^2+24b+144=0 | | 0.6(x-6)=4.2 | | X-3/x=99.5 | | 10=4.9+f | | 2.1b=-18.9 | | k/5=3.7 |